Chapter 5

Thermodynamics

5.1 Free energy of a magnetic body

In real experiment, it is more practical to keep constant temperature and con-
stant pressure rather than constant volume. Thus the Gibbs free energy is
frequently used. The Gibbs free energy of a magnetic body is given by:

G=U-TS+pV — ppH,M. (5.1)

One can treat pgH, as the external intensity variable p, while M corresponds
to the intrinsic variable as —V'. The opposite sign comes up since energy must
be given to a body to increase its magnetization, whereas work is done by a
body as it increase its volume against an external pressure.

Small changes in the conditions will produce a change in G as:

dG = dU — TdS — SdT + pdV + Vdp — jioHadM — jio MdH,. (5.2)

When the temperature and the pressure are kept constant, the change in
free energy by changing the applied field H,is given by:

dG = dU — TdS + pdV — poHadM — pgMdH,. (5.3)

For a magnetic body sitting at a constant temperature and a stable pressure,
its internal energy change is:

dU = TdS—pdV + poHadM. (5.4)

work done on body

Therefore, the free energy change is:

dG = —poMdH,. (5.5)
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And the total free energy change of a body when it is magnetized to a
magnetic moment of M by the application of an external field strength H, is
then:

H,
Gm@—mmzﬂml MdH,. (5.6)

5.2 Free energy of a superconductor

For a superconductor, we know from the Meissner effect that:

M= —H. (5.7)

Then the Gibbs free energy per unit volume g4(7T, H) of the superconductor
in the superconducting state would vary with the application of magnetic field
H,:

H,
gs(T7 Ha) = gs(T7 O) - /JO/ MdH,
0
H,

= gs(T,0) + o HdH, (5.8)
0

1
= g4(T,0) + i“ng' (5.9)

As shown in Fig.5.1, when the applied field reaches some certain value, the
free energy of the superconducting state would surpass that of the nomal state
9gn(T,0). The superconductor would loose its superconductivity and enters the
normal state. This field value is the critical field H,. and we have:

9s (T, Hc) = 0gn (T7 0), (510)

= SHA(T) = gu(T,0) ~ 6.(T, 0). (5.11)

The Gibbs free energy of the normal state is almost independent of the
applied field since the magnetization of a metal is typically negligible.

5.3 Entropy of the superconducting state

The change of the Gibbs free energy is given by Eq.(5.2) when the external
conditions is altered. If the pressure and magnetic field are kept constant but
the temperature is varied by dT', then the change of free energy is:

dG =dU —TdS — SdT + pdV — poH,dM. (5.12)
As the internal energy change is given by Eq.(5.4), so:
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gn(T, H,)

Figure 5.1: Variation of Gibbs energy of a superconductor in the application of
magnetic field.

dG = —SdT, (5.13)

le]
S=— () . (5.14)
T ), .

Now lets us derive the entropy difference between the normal and super-
conducting states. As discussed in the above section, the Gibbs free energy
difference between the normal and superconducting states is:

1 1
9n(T, Hy) — g5(T, Hy) = 5MOHE(T) - iuoHﬁj. (5.15)
As H, has no temperature dependence. Then one obtains:
dH.
s$n(T,Hy) — ss(T) Hy) = —puoH(T) I (5.16)
dH.
a7 < 0= s,(T, Hy) > s5(T, Hy). (5.17)

The entropy of the superconducting state is smaller than that of the normal
state. So the superconducting state is more ordered than the normal state.

From the third law of thermodynamics, we know that the entropy must goes
to zero at the absolute zero temperature 7" = 0. Therefore, both s,, and s, must
be equal to zero at T = 0:

sp(T'=0) =s5(T =0). (5.18)
Since the critical field at T' = 0 is nonzero,
H. (T =0)>0. (5.19)
Then from Eq.(5.16) we have:
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dH,
ar
At zero field T, the critical field is zero. Therefore the entropy of the normal
at superconducting states are also the same at T,:

[7=0=0. (5.20)

H.(T =T,) =0, (5.21)

= $p(T:) = s5(T%) (5.22)

Figure 5.2(a) displays the temperature variations of the entropy for normal
and superconducting states of a superconductor.Therefore, at zero field, the first
derivative of the free energy, i.e. entropy is continous at the superconducting
transition. Such a transition is called a second order phase transition. And no
latent heat is present L = T'(sy, — ss)m, =01, = 0.

However, things are different when magnetic field is applied. In the presence
of magnetic field, the critical temperature shifts to lower temperature and the
critical field is non-zero. There is a discontinuity in the entropy as shown in
Eq.(5.16). And there exists latent heat:

dH,
dr -’
Thus, at non-zero field, the superconducting transition is of first order.

L(H, >0)=T(sp — 8s)u, = —TpoH.(T)

5.4 Specific Heat

The specific heat is the amount of heat AQ needed to raise the temperature of
an object by AT. In real experiments, the specific heat is measured at constant
pressure. The specific heat is then given by:

A4Q _ dQ

@ =dinar = ar (>23)

dQ = Tds, (5.24)

C, =T (85> S (‘929> (5.25)
P ), u 2 ),y

According to Eq.(5.16), one finds the difference in the specific heats of the
superconducting and normal states:

d’H.,
Cs—C, = T/'LOHci + T,U/O (

e (5.26)

At zero field field T, H. = 0, and:

dH.\?
T ) -

dH,\?
(CS — CY'n)TC - TCNO ( aT ) . (527)
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This is the Rutgers’ formula, which predicts a discontinuity in the specific
heat at the superconducting transition.

The specific heat of a metal is contributed from the lattice and conduction
electrons.

Cp == Clatt + Cel~ (528)

The properties of the lattice heat capacity do not change at the transition.

Cs - Cn = (Cel)s - (Cel)n- (529)
For a normal metal:
7\ 3
Cpn = Clatt + (Cet)n = A (9> +T, (5.30)

where A is a constant with the same value for all metals, 8 is the Debye
temperature and the Sommerfeld coefficient v =272k% N (0) is a measure of the
density of electron states N(0) at the Fermi surface.

When the applied field H, > H,, the system is in the normal staten and the
specific heat is:

c, A
= (0—3)T2 +1. (5.31)

From which the slope A/6% and the intercept v can be determined by a
linear plot of % vs T?. And the lattice contribution Cjayy = A(T/6)? can be
determined.

Then the electronic contribution to the superconducting state can be evalu-
ated by subtracting the Cj,y = A(T/0)3 from the total specific heat:

(Cel)s = Cs - Clatt~ (532)
(Cet)n =AT (5.33)
(Ceat)s = aexp(—b/kpT) (5.34)

The electronic heat capacity of the superconducting state has the form of
form of the thermal activation, which hints of an energy gap b. This gap rapidly
decreases to zero when the temperature is raised close to T,.
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Figure 5.2: The entropy (a) and electronic heat capacity (b) of the supercon-
ducting and normal states.



