Chapter 3

Electrodynamics

3.1 Cosequence of Zero Resistance

As a consequence of zero resistance, electrons in a superconductor accelerates steadily in a constant
electric field E:

dvs
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where v, is the velocity of the superelectrons, m and e = —1.602 x 10~'?C are mass and charge
of superelectrons. The supercurrent density is then:
J, = ngevy (3.2)

assuming a superelectrons density of n;.
Combining Eq.(3.1) and Eq.(3.2), one can see that the supercurrent increases continuously with
a rate given by:
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which is known as the first London equation.

As we known from basic electrodynamics, the electric field, current and magnetic field are

correlated by Maxwell’s equations:
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In a non-magnetic superconducting metal, the relative magnetic permeability p, ~ 1 and B =
uwoH. The displacement current D is typically negligible in comparison with Jgunless the magnetic
fields vary rapidly in time. Therefore, we can write the Maxwell equations in Eq.(3.4) and Eq.(3.5)
for a superconductor as:
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5 V x (3.6)
V x B = pJs (3.7)
Substituting Eq.(3.3) into Eq.(3.6):
oB m 0Js
ot 7n362v x ot (3.8)
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Figure 3.1: Magnetic field applied parallel to boundary of superconductor.
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Replace Js using Eq.(3.7) gives:

0B m 0B
a = 77M0n562v <V X 8t> (39)
As 0B 0B 0B
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and Maxwell’s equations tell us
VeB=0 (3.11)
Now Eq.(3.9) becomes
0B 10B
272 _ ~ 22 A2
v ot a Ot (3.12)
where the constant o = ﬁ

The magnetic flux density in a superconductor must satisfy the differential equation Eq.(3.12)
as a consequence of zero resistance. Consider a infinite half superconductor with a magnetic field
applied parallel to its boundary as displayed in Fig.3.1. If the applied field is uniform, Eq.(3.12)
can be reduced to its one dimensional form:
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with the physical solution of:
0B(z) 0B, —x
o T o (\/&) (3.14)

This tells us that the changes in flux density aBa(f) inside a superconductor varnish away expo-
nentially. The magnetic flux density has a constant value in the bulk with a distance larger than

Ja.

3.2 The London Equations

The Melssner effect says that the flux density inside a superconductor is a constant zero. Therefore
not only 2 B B hut B itself must die away exponentially below the surface. To match the Meissner’s
experimental findings, in 1935, the London brothers F. and H. London therefore proposed that B
also follows the differential equation Eq.(3.12) [1]:

1
VB = -B (3.15)

Similarly, the magnetic flux density dies away exponentially inside a superconductor as(Fig.3.2):
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Figure 3.2: The magnetic flux density dies away exponentially inside a superconductor with a
characteristic length of London penetration depth Ap.

B(z) = Bueap (;f) , (3.16)
AL =a = (que2>l/2' (3.17)

The characteristic length Ay at which the magnetic flux density drops to B,/e is called the
London penetration depth. The London penetration depth can be estimated (ns ~ 4 x 10?® m™ for
typical metals) to be ~ 1078 m.

Equation (3.16) could be arrived naturally if one could replace %—Jf but B starting from Eq.(3.8).
Then one has the second London equation:

B=_ "

- ezv x Js. (3.18)

Together with Equation(3.3), we have derived the famous London equations, namely:

dJs  nge?
— E 3.19
n —E, (3.19)
m 2
B=-—7-VxJ=—pA°VxJ. (3.20)
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The zero resistance property of a superconductor is described by the first London equation
Eq.(3.19), which essentially says that electric field is not allowed in a superconductor unless the
current is changing with time. The Meissner effect is described by the second London equation,
which implies that the magnetic flux density could only survive within the London penetration
depth below the surface of a superconductor.

3.3 Surface Current

Consider the case of Fig.3.2, where the applied magnetic field is along the z direction. Then the
Maxwell’s equation Eq.(3.7) reduces to:

0B .
“or HoJy- (3.21)

From Eq.(3.16), we have,
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Figure 3.3: Temperature dependence of the penetration depth of Sn [2].

OB B,
o —Eexp(—x/)\L). (3.22)
Substitute Eq.(3.22) into Eq.(3.21):
B,
exp(—x/AL). (3.23)

j =
Y poAL
Clearly, the current could only flow on the surface of a superconductor with the characteristic

thickness of the London penetration depth.
The penetration depth is temperaure dependent and follows an emperical relation:

—1/2
(3.24)

AT) = Ao [1 - (T)4

where \pis the penetration depth at zero temperature. As shown in Fig. 3.3, the penetration depth

diverges when T, is approached from below.
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