Millikan's Oil-drop Experiment

Mingquan He| College of physics

What is the smallest thing in universe?

History of atomic model

History of atomic model

Cathode ray

Ing. Hitton

Johann Wilhelm Hittorf (27.03.1824 – 28.11.1914) German physicist

Eugen Goldstein (5.9.1850 – 25.12.1930) German physicist

Mass spectrometry

Sir Joseph John Thomson

(18.12.1856 – 30.8.1940) English physicist **Nobel Prize in 1906**

In **1897**, Thomson showed that **cathode rays** were composed of previously **unknown negatively charged particles ("corpuscles")**.

George Johnstone Stoney 1891 Electron

The gold foil experiment

THOMSON MODEL

Ernest Rutherford (30.8.1871 – 30.10.1937) New Zealand born British physicist Nobel Prize in Chemistry (1908)

Father of nuclear physics

1 Å = 100,000 fm

Oil drop experiment

Robert Andrews Millikan (22.03.1868 – 19.12.1953) **Nobel Prize in 1923**

Determination of electron charge

Oil drop experiment

Robert Andrews Millikan (22.03.1868 – 19.12.1953) **Nobel Prize in 1923**

Determination of electron charge

Question?

How do the oil drops become charged?

Stationary Electron

Where do the forces belong on the diagram?

Balancing Forces:

Force due to gravity: ? $F_g = mg$ Force due to electric field: ? $F_E = qE = q \frac{V}{d}$

$$F_g = F_E$$
$$mg = q \frac{V}{d}$$

Question: Which of the above quantities would be hard to measure?

Stationary Electron

Mass!

How would we get around this problem? Any ideas? Use density!

Density Equation:
$$\rho = m/V$$

V = volume

 $\succ m = \rho V$

Volume of a spherical oil droplet?

$$V = \frac{4}{3}\pi r^3$$
 Therefore mass: $m = \frac{4}{3}\pi\rho r^3$

Stationary Electron

Question: Are there any other forces to consider?

Stationary Electron

$$F_a = m_{air}g$$

$$F_a = \frac{4}{3}\pi g \rho_{air} r^3$$

Question: Are there any other forces to consider?

Stationary Electron

• We now have:

$$F_g = F_a + F_E$$

 $\frac{4}{3}\pi g\rho_{oil}r^3 = \frac{4}{3}\pi g\rho_{air}r^3 + q\frac{V}{d}$

This can easily be solved for q to obtain: $q = \frac{4/3 \pi (\rho_{oil} - \rho_{air}) gr^3 d}{V}$

Task: Try to confirm this result for yourselves

Question: Which of these quantities would be hard to measure?

Moving Electron

• The radius r. To get around this, we use stokes law.

 $F_r = 6\pi\eta r v$

• At terminal velocity, this is equal to the weight of the drop

$$(m_{oil} - m_{air})g = 6\pi\eta rv$$

• Remember: $\boldsymbol{\eta}$ is the viscosity of air

v is the terminal velocity of the oil drop

Moving Electron

$$(m_{oil} - m_{air})g = \frac{4}{3}\pi(p_{oil} - p_{air})gr^3$$

$$(m_{oil} - m_{air})g = 6\pi\eta rv$$

$$r = 3 \sqrt{\frac{\eta v_t}{2(p_{oil} - p_{air})g}}$$

Moving Electron

Now we can measure all quantities easily.

Moving Electron

$$v_t = s/t$$

$$q = \frac{9\pi d}{V} \times \sqrt{\frac{2\eta^3 v_t^3}{(\rho_{oil} - \rho_{air})g}}$$
$$= \frac{t^{-3/2}}{V} \times 9\pi d \sqrt{\frac{2\eta^3 s^3}{(\rho_{oil} - \rho_{air})g}}$$

 $d \int \mathcal{V}_{t} \stackrel{F_{a} \uparrow F_{r}}{\stackrel{}{\downarrow} \stackrel{}{\bullet} F_{g}} 0 \vee V_{t} \stackrel{V_{t} \downarrow \stackrel{}{\bullet} F_{g}}{\stackrel{}{\bullet} V_{t} \stackrel{}{\bullet} F_{g}} 0 \vee V_{t} \stackrel{V_{t} \downarrow \stackrel{}{\bullet} F_{g}}{\stackrel{}{\bullet} V_{t} \stackrel{}{\bullet} F_{g}} 0 \vee V_{t} \stackrel{V_{t} \downarrow \stackrel{}{\bullet} F_{g}}{\stackrel{}{\bullet} V_{t} \stackrel{}{\bullet} F_{g}} 0 \vee V_{t} \stackrel{V_{t} \downarrow \stackrel{}{\bullet} F_{g}}{\stackrel{}{\bullet} V_{t} \stackrel{}{\bullet} F_{g}} 0 \vee V_{t} \stackrel{V_{t} \downarrow \stackrel{}{\bullet} F_{g}}{\stackrel{}{\bullet} V_{t} \stackrel{}{\bullet} F_{g}} 0 \vee V_{t} \stackrel{V_{t} \downarrow \stackrel{}{\bullet} F_{g}}{\stackrel{}{\bullet} V_{t} \stackrel{}{\bullet} F_{g}} 0 \vee V_{t} \stackrel{V_{t} \downarrow \stackrel{}{\bullet} F_{g}}{\stackrel{}{\bullet} V_{t} \stackrel{}{\bullet} F_{g}} 0 \vee V_{t} \stackrel{V_{t} \downarrow \stackrel{}{\bullet} F_{g}}{\stackrel{}{\bullet} V_{t} \stackrel{}{\bullet} F_{g}} 0 \vee V_{t} \stackrel{}{\bullet} V_{t} \stackrel{}{\bullet} F_{g} 0 \vee V_{t} \stackrel{}{\bullet} F_{g} 0 \vee V_{t} \stackrel{}{\bullet} F_{g} 0 \vee V_{t} 0 \vee V_{t} \stackrel{}{\bullet} F_{g} 0 \vee V_{t} 0$

Air is not continuous

$$\eta' = \frac{\eta}{1 + \frac{b}{pr}} l/t$$

Values of constants

- air viscosity, η = 1.83 imes 10⁻⁵ kg/(m·s)
- oil density, ρ_{oil} = 981 kg/m³ at 20°C
- air density, ρ_{air} = 1.30 kg/m³ at 20°C
- plate spacing, $d = 5.00 \times 10^{-3}$ m
- Viscosity coefficient, $b = 8.23 \times 10^{-3} \text{ N/m}$
- Pressure p=1.01 imes 10⁵ Pa

$$q = \frac{9\pi d}{V} \times \sqrt{\frac{2\eta^3 v_t^3}{(\rho_{oil} - \rho_{air})g}}$$
$$= \frac{t^{-3/2}}{V} \times 9\pi d \sqrt{\frac{2\eta^3 s^3}{(\rho_{oil} - \rho_{air})g}}$$

Air is not continuous

Appendix Table I: Experimental Raw Data for Millikan's Oildrop Experiment

Electron

Data Recording

Drop number	Balance voltage, $V(V)$	Falling time, $t(s)$	Charge, $q(\times 10^{-19} \text{C})$
1			
2			
3			
4			

Data Analysis

Envelope (n)	m/g	#cards
1	6.0	?
2	12.5	?
3	12.6	?
4	7.6	?
5	6.0	?
6	7.6	?
7	11.0	?
8	4.3	?
9	4.3	?

Data Analysis

Sort B low to high; renumber

Data are in groups.

Data Analysis

Data Analysis

No#	q/c
1	а
2	b
3	С
4	d
5	е
6	f
7	g
8	h
9	i

q=ne

How to find e?

Time for fun!

THANK YOU !